Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 276, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605285

RESUMO

BACKGROUND: Stephania kwangsiensis Lo (Menispermaceae) is a well-known Chinese herbal medicine, and its bulbous stems are used medicinally. The storage stem of S. kwangsiensis originated from the hypocotyls. To date, there are no reports on the growth and development of S. kwangsiensis storage stems. RESULTS: The bulbous stem of S. kwangsiensis, the starch diameter was larger at the stable expanding stage (S3T) than at the unexpanded stage (S1T) or the rapidly expanding stage (S2T) at the three different time points. We used ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and Illumina sequencing to identify key genes involved in bulbous stem development. A large number of differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs) were identified. Based on the differential expression profiles of the metabolites, alkaloids, lipids, and phenolic acids were the top three differentially expressed classes. Compared with S2T, significant changes in plant signal transduction and isoquinoline alkaloid biosynthesis pathways occurred at both the transcriptional and metabolic levels in S1T. In S2T compared with S3T, several metabolites involved in tyrosine metabolism were decreased. Temporal analysis of S1T to S3T indicated the downregulation of phenylpropanoid biosynthesis, including lignin biosynthesis. The annotation of key pathways showed an up-down trend for genes and metabolites involved in isoquinoline alkaloid biosynthesis, whereas phenylpropanoid biosynthesis was not completely consistent. CONCLUSIONS: Downregulation of the phenylpropanoid biosynthesis pathway may be the result of carbon flow into alkaloid synthesis and storage of lipids and starch during the development of S. kwangsiensis bulbous stems. A decrease in the number of metabolites involved in tyrosine metabolism may also lead to a decrease in the upstream substrates of phenylpropane biosynthesis. Downregulation of lignin synthesis during phenylpropanoid biosynthesis may loosen restrictions on bulbous stem expansion. This study provides the first comprehensive analysis of the metabolome and transcriptome profiles of S. kwangsiensis bulbous stems. These data provide guidance for the cultivation, breeding, and harvesting of S. kwangsiensis.


Assuntos
Alcaloides , Plantas Medicinais , Stephania , Stephania/química , Stephania/metabolismo , Plantas Medicinais/metabolismo , Cromatografia Líquida/métodos , Lignina/metabolismo , Espectrometria de Massas em Tandem , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Alcaloides/metabolismo , Amido/metabolismo , Isoquinolinas/metabolismo , Tirosina/metabolismo , Lipídeos , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 22(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067452

RESUMO

A series of saccharide-modified thiadiazole sulfonamide derivatives has been designed and synthesized by the "tail approach" and evaluated for inhibitory activity against carbonic anhydrases II, IX, and XII. Most of the compounds showed high topological polar surface area (TPSA) values and excellent enzyme inhibitory activity. The impacts of some compounds on the viability of HT-29, MDA-MB-231, and MG-63 human cancer cell lines were examined under both normoxic and hypoxic conditions, and they showed certain inhibitory effects on cell viability. Moreover, it was found that the series of compounds had the ability to raise the pH of the tumor cell microenvironment. All the results proved that saccharide-modified thiadiazole sulfonamides have important research prospects for the development of CA IX inhibitors.


Assuntos
Carboidratos/farmacologia , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Tiadiazóis/síntese química , Tiadiazóis/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células HT29 , Humanos , Simulação de Acoplamento Molecular , Microambiente Tumoral/efeitos dos fármacos
3.
Carbohydr Res ; 503: 108311, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33866267

RESUMO

A series of oleanolic acid derivatives bearing acetyl-substituted l-arabinose moiety has been synthesized and screened in vitro for cytotoxicity against ten cancer cell lines and four normal cell lines. The antiproliferative evaluation indicated that synthetic derivatives showed excellent selectivity, as they were toxic against only A431 cell line. Among them, the compound 6 possesses the best inhibitory activity. A series of pharmacology experiments showed that compound 6 significantly induced A431 cells apoptosis and cell cycle arrest, which could serve as a promising lead candidate for further study.


Assuntos
Antineoplásicos/farmacologia , Arabinose/farmacologia , Ácido Oleanólico/farmacologia , Saponinas/farmacologia , Acetilação , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Arabinose/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Conformação Molecular , Ácido Oleanólico/síntese química , Ácido Oleanólico/química , Saponinas/síntese química , Saponinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...